
sponds to the case where all the s particles reach the surface without collision, and for 
Kn + 0 the result is close to c x = 0.88, the value given by the modified Newtonian theory 
for M § ~. 

Qualitatively flow of elastic particles over a sphere is close to flow of a rarefied 
gas over a sphere, and with the model adopted we can compute the flow for Kn corresponding 
to the transition regime. This gives a basis to expect that the three-component model pre- 
sented can be used to compute approximately the flow of a rarefied gas over bodies in the 
transition regime. To do this we need to use more realistic laws for the interaction of 
particles with the surface and to compute the viscosity of the t component. In addition, 
in order to be able to vary the Mach number we must introduce random motion of particles in 
the unperturbed flow, since in the model presented the flow of s particles corresponds to 
the limiting hypersonic case of M § ~. 
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NONSELF-SIMILAR JET OF A NON-NEWTONIAN LIQUID 

A. V. Soldatkin UDC 532.526 

The results of an analysis of the propagation of a two-dimensional submerged jet of a 
non-Newtonian liquid over the entire zone of its development are given within the framework 
of the boundary theory. 

Jet flow is encountered in many technological applications. The pressing problem of 
analyzing non-Newtonian jet flow is created, in particular, by the broadening of the scope 
of application of polymers. Moreover, one must not forget the analogy between a turbulent 
flow and a non-Newtonian liquid with changes in the integral hydrodynamic parameters. 

A self-similar solution was obtained earlier for a two-dimensional jet of a non-New- 
tonian liquid [I]. We shall investigate here the development of a two-dimensional jet of a 
non-Newtonian liquid throughout the entire region of its propagation by means of numerical 
calculations, using the method of local similarity. The Ostwald-de Ville model is used for 
approximating the flow rheology. Practical application of this model is justified in many 
cases of actual flow, for instance, polymer flow. 

The initial equations of momentum transport and continuity of the submerged two-dimen- 
sional jet of a non-Newtonian liquid are given by 

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
i, pp. 42-44, January-February, 1991. Original article submitted May 4, 1989; revision 
submitted August 7, 1989. 

38 0021-8944/91/3201-0038512.50 �9 1991 Plenum Publishing Corporation 



o o,~ = 1 ,o  

Fig. 1 

u-OT+v aT ~ -~1 T ' - ~ + - ~ f = 0 .  

The boundary conditions for the jet flow are 8u/By = 0, v = 0, y = 0, x > 0, u + 0, y + ~. 
The initial conditions are u = i, x = 0, IYl < d/2, u = 0, !Yl ~ d/2. 

The presence of the integral invariant (jet momentum) facilitates a substitution of 
variables convenient for numerical calculations [2], 

Y 

= x, ~I = S u2 dg" 
o 

In terms of the new variables, the nonself-similar problem of an i~mersed, two-dimen- 
sional jet of a non-Newtonian liquid is stated as follows: 

a--= = Nu ~ § (2N - -  .I) u- , 
a~ l - 

u = 1 ,  ~ = 0 ,  0 < q < l , , . = o ,  ~ = o ,  ~ I = 1 ,  a u / a n = v = = o ,  q = o ,  
~ > ~ 0 ,  u = O ,  ~1 = i .  

(i) 

Problem (i) was solved numerically by using the method of straight lines. The integra- 
tion band was subdivided into P bands (P = 20). One should mention the advantage of the 
substitution of variables - the conversion of an infinite integration region into a finite 
band - which makes it possible to avoid the buildup of numerical errors. The direct inte- 
gration was performed by using the Runge-Kutta method for a system of P - 1 ordinary differ- 
ential equations. The characteristic results of the numerical solution are given in Figs. 
i-3. 

Figure 1 shows the variation of the axial velocity and thickness of the jet along its 
axis for different values of the index of the non-Newtonian character N: 1)-9) N = I; 0.75; 
1.5; 2; 0.5; 0.25; i; 2; 0.25, respectively; 7)-9) ~. The changes in the axial velocity as 
the liquid deviates from the Newtonian behavior consist in the following. For dilatant liq- 
uids (N > i), the axial velocity diminishes to a lesser extent in comparison with a Newtonian 
liquid. In the limiting case (N + ~), the axial velocity does not change along the x axis, 
and we have jet-stream core flow conditions. For large N values, the jet core spreads more 
slowly than in the case of smaller N values. For a pseudoplastic liquid (0 < N < i), the 
axial velocity diminishes more quickly than for a Newtonian liquid; there is an initial re- 
gion 0 ~ x ~ 0.2 where the jet core of a pseudoplastic liquid differs little from a New- 
tonian core. Changes in the jet thickness of a pseudoplastic liquid occur more quickly, and 
those of a dilatant liquid more slowly, than in the case of a Newtonian liquid beyond the 
inversion point Xin f ~ 0.2; for 0 < x < Xinf, the opposite occurs. 

Figure 2 shows the jet velocity profiles for different values of N: 1)-4) N = 2; 1.5; 
i; 0.25 at the distance x = 0.3 from the initial cross section of the jet. We readily see 
that there is little difference between the profiles in a wide range of N values (0.25-2) of 
the rheological model, which is entirely suitable for practical applications. In other words, 
the numerical solution serves as a basis for using the profile of a Newtonian liquid to esti- 
mate the constants of a self-similar non-Newtonian jet. 
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Figure 3 shows the behavior of the velocity profiles of a pseudoplastic liquid with in- 
creasing distance from the initial cross section: 1)-3) x = 0.2; 0.4; 0.6; N = 0.25. The 
spreading of the jet increases with distance from the initial cross section; much of it 
occurs in the region around the inversion point Xin f. 

Analysis of the more distant region of jet propagation is based on the local similarity 
method [3], 

u = u m ( ~ l ' ( ~ ) ,  ~ = y/6(=).  

In terms of the similarity variable, the axial velocity is u m = Bx -z/3N, while the jet thick- 
ness is 

~) = C x  2 / 3 N  B = 0~, - ( ) V q - 1 ) / 3 N ,  C = (y. ( 2 - 1 ~ ( ) / 3 N ,  (:z : '~1 I?" , "~1 d q )  = . 

--oo 

For an analytical estimate of the near region of jet development, we use the concept of 
the polar distance 7, which can be assigned by using the mass discharge at the initial cross 
section of the jet [4]: 

V = M ~ d N - 1 / ( 3 6 m u ~ - l I )  �9 

Introducing the abscissa with a shift, we obtain the expressions for the axial velocity and 
the jet thickness that are in satisfactory agreement with the numerical solution (see Fig. 
i, where the crosses pertain to the analytical solution): 

, ~ 2 / 3 N  u~n = B x - 1 / 3 N ( I  -~ "~/x) -1/z;~, ~ = 9 /2n ,  6 = Cx2 /aN( i  -j- ?/x)  , , 

"7 = 7o/N2,~,  "Yo = 0 . 0 5 ,  n = n o e l / N ,  n o = 8 , 3 .  

In conclusion, it should be noted that the above analysis of the propagation of a two- 
dimensional nonself-similar jet of a non-Newtonian liquid in submerged space is also of prac- 
tical, besides theoretical, interest. In addition to the above applications, one could also 
mention the use of magnetic liquids, where the rheological effect plays a substantial role, 
while the small scale in these applications require that the flow parameters be known for 
the entire flow development zone. 

LITERATURE CITED 

i. K. B, Pavlov, "Two-dimensional, submerged jets of a non-Newtonian liquid with a power 
rheological law," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 (1979). 

2. B. P. Beloglazov and A. S. Ginevskii, "Calculation of laminar wakes where the condition 
of excess momentum constancy is satisfied exactly," Uch. Zap. TsAGI (Transactions of the 
N. E. Zhukovskii Aero-Hydrodynamics Institute), ~, No. 4 (1974). 

3. A. V, Soldatkin, "Round jet in an Archimedean force field in the case of a variable 
thermal expansion coefficient," Inzh.-Fiz. Zh., 45, No. 6 (1983). 

4. O. G. Martynenko, Yu. A. Sokovishin, and V. N. Korovkin, Theory of Laminar, Viscous Jets 
[in Russian], Nauka i Tekhnika, Minsk (1985). 

40 


